
1. Introduction
In recent decades, the ever-increasing urban sprawl in areas prone to hydrology-related hazard (Szewrański 
et al., 2018) and the impact of climate change on precipitation patterns (Pfahl et al., 2017) increasingly 
require efficient management of water resources. Skillful operational streamflow forecasting systems have 
been developed to support decision-makers in a wide range of real-life applications (Zappa et al., 2018), 
such as the forecasting of both flooding events (Alfieri & Thielen, 2015; Blöschl et al., 2017) and critical 
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Plain Language Summary Accurate streamflow forecasts are of critical importance to 
several real-time applications, such as water resource management and flood prevention. The predictive 
accuracy critically depends on the quality of the forecast initial conditions. Data assimilation (DA) 
techniques are increasingly being implemented to obtain the most likely estimation of forecast initial 
conditions through the assimilation of observed hydrological variables. This study compares the 
performances of two DA techniques, namely the Ensemble Kalman filter and the Particle filter, in terms 
of both efficiency and temporal persistence (up to 10 days) of the updating effect. The analysis addresses 
the impact of different sources of uncertainty and the update of different model states and parameters 
of a lumped conceptual hydrological model, when assimilating observed discharges over 232 watersheds 
in France. Results show that an accurate estimation of the initial level of the routing store ensures the 
most benefit of DA, as this state variable is the most correlated with observations. A comprehensive 
representation of the state uncertainty generally improves the estimation of the forecast initial conditions 
resulting from the assimilation. While the Ensemble Kalman filter outperforms the Particle filter in the 
short term, this latter guarantees a longer-lasting updating effect over the forecast horizon.
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droughts (Hao et al., 2018; Trambauer et al., 2015), as well as the optimization of hydropower production 
(Boucher & Ramos, 2018).

The growing awareness of the critical importance of uncertainty in hydrological forecasting is a common 
issue across most forecasting systems. Blöschl et al.  (2019) recently identified the need to untangle and 
reduce the different sources of uncertainty in model predictions as one of the main unsolved problems in 
hydrology. Indeed, several sources of uncertainty can jointly affect model simulations, namely, random or 
systematic errors in model forcings, uncertainty due to suboptimal parameter estimates, and errors due 
to incomplete or biased model structure (Thiboult et  al.,  2016). Hence, operational forecasting systems 
are increasingly turning from single deterministic predictions to probabilistic forecasts, thereby making it 
possible to take account of most of these uncertainties (Alfieri et al., 2012; Cloke & Pappenberger, 2009). 
For more than a decade, the international Hydrologic Ensemble Prediction Experiment (HEPEX) initiative 
has been investigating how best to generate, communicate, and use hydrologic ensemble forecasts (Schaake 
et al., 2006, 2007).

Several hydrological ensemble forecasting systems are currently operational at regional and national lev-
els and tailored to the spatial and temporal scales of interest, according to the uniqueness of hydrological 
basins, climate conditions, data availability, and specific end-user demands (Harrigan et al., 2018; Thirel 
et al., 2008; Werner et al., 2013). Ensemble hydrological forecasting systems are also operational at the conti-
nental scale, such as the European Flood Awareness System (EFAS) (Alfieri et al., 2014; Thielen et al., 2009) 
in Europe, the U.S. Hydrologic Ensemble Forecast Service (HEFS) (Brown et al., 2014), and the African 
Flood Forecasting System (AFFS) (Thiemig et al., 2015). At even larger scales, the Global Flood Awareness 
System (GloFAS) (Alfieri et al., 2013) and the Global Flood Forecasting and Information System (GLOFFIS) 
(Emerton et al., 2016) provide global hydrological forecasts. In recent decades, streamflow predictability 
has been extended from a few hours to several days or even months, depending on the main forecasting 
objectives (Cuo et al., 2011).

When dealing with real-time operational applications, a trade-off is necessary between model complexity, 
data requirements, computational burden, and forecast accuracy (Butts et al., 2004). Even though spatially 
distributed hydrological models exploit the observed spatial information to provide discharge simulations 
also at interior points of the watershed, they can be computationally intensive (Young, 2002) and generally 
sensitive to the calibration strategy (Reed et al., 2004). On the other hand, lumped hydrological models are 
a reliable operational tool for streamflow forecasting, thanks to their simplicity, computational efficiency, 
and lower data requirements (Hapuarachchi et al., 2011). Conceptual rainfall–runoff models have proved 
their effectiveness in streamflow forecasting (e.g., Sacramento model, Burnash et al., 1973; HBV-96 model, 
Lindström et al., 1997) owing to the small number of parameters to be calibrated. Indeed, an increase in 
model complexity does not necessarily entail an enhancement in performance, mainly due to limitations 
in the available calibration data (Reed et al., 2004) and the resulting identifiability problems in parameter 
estimation (Boyle et al., 2001).

Regardless of the modeling approach, forecast reliability generally decreases throughout the forecast ho-
rizon, mainly due to the inherent uncertainty in initial conditions (ICs) and the stochastic behavior of 
meteorological forcings (Li et al., 2009). Recent works contended that streamflow forecasting skill is mostly 
controlled by hydrological ICs (Shukla & Lettenmaier, 2011; Wood et al., 2016; Yossef et al., 2013). Hence, 
ever-growing interest is focused on enhancing forecast ICs by updating model states and/or parameters 
through the assimilation of available observations into hydrological models to improve forecast accuracy 
and to quantify predictive uncertainty (Liu et al., 2012). For real-time streamflow forecasting, the assimi-
lation of observed discharges is the most common approach, as this hydrological variable is arguably a key 
predictor and its measurements are generally readily available (Clark et al., 2008; Ricci et al., 2011; Thirel 
et al., 2010).

Several data assimilation (DA) techniques, differing in numerical cost and optimality, have been proposed 
and used to assimilate discharge data into hydrologic models for forecasting purposes (Liu et al., 2012). 
Sequential DA, also known as filtering, has gained widespread interest in real-time applications, since this 
approach sequentially updates the system forecasts whenever observations are available (Leisenring & Mo-
radkhani, 2011). Numerous research studies have addressed the potential of sequential DA techniques to 
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improve the skill of streamflow forecasts through the Kalman filter (KF; Kalman, 1960) (C. H. Wang and 
Bai, 2008), extended Kalman filter (EKF; Miller et al., 1994) (L. Sun et al., 2015), ensemble Kalman filter 
(EnKF; Evensen, 1994, 2003) (Blöschl et al., 2008; Rakovec et al., 2012; Samuel et al., 2014; Vrugt et al., 2006; 
Vrugt & Robinson, 2007), unscented KF (UKF; Julier et al., 1995) (Y. Sun et al., 2020), the particle filter (PF; 
Arulampalam et al., 2002) (DeChant & Moradkhani, 2014; Yan & Moradkhani, 2016), and variants of the 
aforementioned filters and smoothers (Noh et al, 2011a, 2013, 2014; Chen et al., 2013; McMillan et al., 2013; 
Rakovec et al., 2015).

Of the filtering methods, the sequential ensemble-based techniques, such as EnKF and PF, are particularly 
well-suited to probabilistic streamflow forecasting systems, since their flexible framework makes it possible 
to explicitly handle different sources of uncertainty and quantify the unknown errors of both model states 
and observations (Noh et al., 2013). Table A1 in the Appendix A provides a summarized overview of some 
of the existing studies on this issue, which will be discussed in more detail here.

Thiboult et al. (2016) demonstrated that the EnKF largely contributes to prediction accuracy by reducing 
and characterizing the uncertainty in ICs, which is identified as the dominant source of uncertainty in 
streamflow forecasting. However, the effect of the EnKF-based assimilation generally faded out quickly 
throughout the forecast time window. In order to ensure the improvement of forecast accuracy, Maxwell 
et al. (2018) pointed out the critical importance of introducing combined mass and flux constraints to pre-
serve the physical consistency of the system when using the EnKF to assimilate observed discharges into a 
lumped conceptual hydrological model. In the study by DeChant and Moradkhani (2011), the PF revealed 
an effective potential to improve state initialization of a seasonal streamflow forecasting system when tak-
ing account of IC uncertainty in addition to forcing uncertainty. The critical importance of preventing the 
underestimation of system uncertainty had been stressed by Berthet  (2010), who tested the PF scheme 
within a conceptual hydrological model for streamflow forecasting. Likewise, the PF-based estimation of 
forecast ICs succeeded in significantly improving seasonal drought probabilistic predictive skill with a suf-
ficiently large lead time (Yan et al., 2017).

Weerts and El Serafy  (2006) investigated the suitability of EnKF and PF schemes for operational flood 
forecasting systems by comparing their performance using a conceptual rainfall–runoff model. While PFs 
outperform the EnKF for a larger number of particles, the EnKF reveals lower sensitivity to the charac-
terization of system uncertainties and it performs best with a limited ensemble size. More recently, Noh 
et al. (2013) compared these two ensemble-based sequential DA techniques to assimilate hourly discharge 
observations into a distributed hydrological model for short-term streamflow forecasting in a small water-
shed. For different forecast lead times, PF-based forecasts revealed higher and longer-lasting accuracy than 
the EnKF-based predictions when considering the uncertainty of model states.

Filtering techniques are widely used to estimate dynamic model states, under the assumption of time-in-
variant parameters, which are usually predefined in advance. However, since there is no guarantee that 
system behavior does not change over time, a time variation of parameters together with state variables 
can be an effective approach to improving forecast reliability (Moradkhani, Sorooshian, et al., 2005). Sev-
eral studies have aimed at assessing the potential of sequential ensemble-based DA techniques in order to 
simultaneously estimate both model states and parameters. Different EnKF-based approaches have been 
developed for the joint state–parameter estimate. As an alternative approach to the augmented state vector 
approach (Reichle et al., 2002; D. Wang et al., 2009; Xie & Zhang, 2010; Young, 2002), Moradkhani, So-
rooshian, et al. (2005) presented a dual state–parameter estimation by iteratively using an EnKF scheme in 
a conceptual rainfall–runoff model for ensemble streamflow forecasting. A further approach was proposed 
by Xie and Zhang (2013), who assessed an EnKF-based partitioned forecast-update scheme to reduce the 
degree of freedom of the high-dimensional state space of a distributed hydrologic model. In addition to the 
EnKF, the PF has been used for joint state–parameter estimation (Guingla et al., 2012; Montzka et al., 2011). 
Moradkhani, Hsu, et al. (2005) demonstrated the applicability of the PF to jointly assess parameter uncer-
tainty and estimate model states in a conceptual hydrologic model through the assimilation of observed 
discharges. The usefulness of the PF-based dual state–parameter updating scheme was addressed by Noh 
et  al.  (2011b), who demonstrated the resulting higher forecast accuracy compared to updating only the 
model states of a parsimonious hydrological model.
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In most applications, both the EnKF and PF schemes succeed in properly enhancing the accuracy of stream-
flow forecasts through the assimilation of observed discharges at the time of forecast. Comparative studies 
detected the main differences between these DA techniques in terms of efficiency (i.e., the PF scheme 
results in longer-lasting accuracy), sensitivity to the ensemble size (i.e., the EnKF scheme is generally less 
sensitive), and computational demand. It is noteworthy that several authors pointed out the key importance 
of accounting for a comprehensive representation of system uncertainties in order to reliably estimate fore-
cast ICs.

Further efforts are needed to extensively investigate the sensitivity of these commonly used DA methods to 
different uncertainties in hydrological forecasting and how these latter can affect both DA-based predictive 
accuracy and the temporal persistence of the DA-based ICs, namely how long the benefit of the updating 
effect lasts over the forecast horizon. Indeed, to the best of the authors' knowledge, no existing study un-
dertakes a comparative analysis of sequential ensemble-based DA schemes in order to thoroughly assess 
their differences in sensitivity to the main sources of uncertainty and the updating of specific states and 
parameters of a streamflow forecasting system for operational purposes.

This study aims to assess how and to what extent the DA-based estimation of forecast ICs can effectively 
improve the predictive accuracy of streamflow forecasts provided by a conceptual rainfall-runoff model. 
The main objective is to investigate the limits and potentialities of a parsimonious hydrological model when 
assimilating real-time discharge observations for operational streamflow forecasting purposes. For this pur-
pose, this study specifically addresses the main issues that need to be investigated when designing the opti-
mal configuration of a new forecasting system, as well as when diagnosing possible deficiencies in existing 
ones. Several experiments were performed to assess the sensitivity of the DA-based estimation of forecast 
ICs to several sources of uncertainty and to the updating of different model states and parameters. In more 
detail, the study aims to:

 (1)  Investigate the performance of two commonly used sequential ensemble-based DA techniques, namely, 
the EnKF and PF schemes, with the aim of assessing the main differences in terms of both efficiency 
and the temporal persistence of the ICs updating effect over the forecast horizon

 (2)  Assess the relative impact of the most relevant uncertainties affecting streamflow forecasts, namely, 
the uncertainty in meteorological forcings, model parameters, and states, on the accuracy of DA-based 
estimates of the forecast ICs

 (3)  Identify the key hydrological processes in a conceptual rainfall–runoff model and thus the most sensi-
tive model states and parameters to be updated in order to achieve the most benefit from the assimila-
tion of observed discharges

Section 2 aims to provide an introduction to sequential ensemble-based DA techniques. After describing 
the case studies, the datasets, and the hydrological model, Section 3 introduces probabilistic DA-based fore-
casts, with a focus on the comprehensive representation of system uncertainties. All experiments are then 
explained in terms of objectives and assumptions, as well as evaluation metrics. The main results are pre-
sented in Section 4 and discussed in more detail in Section 5. Finally, conclusions are outlined in Section 6.

2. Sequential Ensemble-Based Data Assimilation
Filtering techniques make it possible to readily process the observational data (Yt) as they become available 
and to sequentially update the model state at time t (Xt), which is defined as:

   1, , ,Ωt t t tX M X U (1)

where M is the dynamic model operator, which calls for the model input vector (Ut), the vector of the model 
parameters (θ), and the unknown model error (Ωt), which is statistically represented by a random stochastic 
perturbation.

DA integrates observational information to improve prediction accuracy while taking into consideration the 
uncertainty in both measurements and model predictions. One of the main challenges in DA is estimating 
the unknown errors affecting both the observations and the model states, which is of critical importance in 
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order to optimally combine the a priori estimate of the system state (i.e., the background state, b
tX ) with the 

observations to evaluate the analysis state ( a
tX ).

Both EnKF and PF rely on a recursive Bayesian algorithm, based on the key idea of representing each kind 
of uncertainty through specific probability distributions describing the error statistics. The main difference 
between the EnKF and the PF is how they recursively generate an approximation to the probability distribu-
tions of the prognostic variables by using a set of randomly generated model replicates according to a Monte 
Carlo approach (Weerts & El Serafy, 2006).

2.1. Ensemble Kalman Filter

The EnKF (Evensen, 1994) provides an analytical solution to the analysis problem by approximating the 
second-order moments of probability distributions, while assuming Gaussian distributional properties of 
the prognostic variables. Whenever an observation is available, an analysis procedure is performed through 
optimal weighting between simulated and observed values, with the degree of correction determined by 
their degree of uncertainty.

The analysis state of each ith ensemble member ( ,
a
t iX ) is evaluated according to the formula:

       , , ,
a b b
t i t i t t i tX X K Y H X (2)

where ,
b
t iX  is the nstate-length background state vector of each ith ensemble member (nstate is the number 

of state variables), Yt,i is ith nobs-length vector of observations (nobs is the number of available observa-
tions), which are sampled from a distribution with mean equal to the observations at time t and variance 
Rt (see Section 3.3.5 for further details), H is the nobs × nstate operator, enabling transition from the model 
space to the observations space (Evensen, 1994).

The Kalman gain (Kt) is evaluated as a combination of the error covariance matrices of both the model and 
the observations:

  
1T T

t t t tK P H HP H R (3)

where Rt is the nobs × nobs error covariance matrix of observations and Pt is the model error covariance 
matrix, which is diagnosed from the ensemble and dynamically updated at each assimilation time step 
(Evensen, 2003).

The definition of the H operator is of critical importance to properly map model states to observations ones. 
Beside the most conducive application calling for an exact match between observed and modeled quantities, 
a forward model can be required to derive the model equivalent of the observation from model states. When 
dealing with a linear forward model, it can be directly included in the H matrix, otherwise the forward 
model must be run separately.

The EnKF technique also allows for combined state–parameter estimation. One approach is the so-called 
state augmentation, where parameters are treated as model states and are concatenated with them into a 
single joint vector (including both θ and Xt) updated by the DA analysis procedure when observations are 
available (Reichle et al., 2002). Consequently, the covariance matrices are augmented in turn by the covar-
iances between these unknown parameters and each state variable, since model states and parameters are 
jointly updated (Franssen & Kinzelbach, 2008). However, for high-dimensional systems (e.g., distributed 
hydrological models), the state augmentation strategy may suffer from spurious over or underestimated cor-
relations between states and parameters, which are likely to directly affect the DA-based parameter estima-
tion (Xie & Zhang, 2013). Moradkhani, Sorooshian, et al. (2005) contended that the increase in the number 
of unknown variables (i.e., model states and parameters) leads to a greater degree of system freedom, which 
is likely to make the estimation unstable, especially in highly nonlinear models. An alternative approach to 
state augmentation is dual estimation, designed as two parallel filters that recursively estimate both model 
states and parameters (Moradkhani, Sorooshian, et al., 2005). According to dual estimation, the EnKF is 
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first applied to update the parameters and then reapplied to obtain the analysis states, as a function of the 
updated parameters.

The major drawback is that the Kalman filtering neglects moments higher than second-order in the analysis 
step, according to the underlying assumption that both the model states and the observations have a Gauss-
ian distribution (Moradkhani, Hsu, et al., 2005). Indeed, in nonlinear stochastic dynamic systems, the first 
two moments of the prior density are generally not sufficient to properly approximate the posterior prob-
ability distribution, which is unlikely to be Gaussian (Salamon & Feyen, 2009; Weerts & El Serafy, 2006). 
For such cases, an accurate estimate of posterior probability requires the tracking of higher-order moments 
(Moradkhani, Hsu, et al., 2005).

2.2. Sequential Importance Resampling Particle Filter

Particle filtering has the main advantage of relaxing the need for a restrictive assumption regarding Gauss-
ian property constraints (Weerts & El Serafy, 2006). Indeed, since the full prior density functions are used 
within the updating procedure, PF makes it possible to handle the propagation of non-Gaussian distri-
butions through nonlinear models (Arulampalam et al., 2002; Salamon & Feyen, 2009). According to the 
sequential importance sampling (SIS) approach (Guingla et al., 2012; Moradkhani, Hsu, et al., 2005), the 
particles are randomly sampled from a known, easy-to-sample proposal distribution to approximate poste-
rior probability. Whenever an observation is available, the importance weights associated with the particles 
are recursively updated, as a function of the likelihood of particle states with respect to the observed one. 
Particles are then properly weighted and propagated sequentially by applying Bayes' rule to estimate pos-
terior distribution through an optimal combination of the prior distribution and the likelihood function. 
However, since the stochastic behavior of the system generally causes dispersion of the particles, only a 
few particles are likely to have nonzero importance weights after several iterations, while most of them are 
discarded owing to their negligible probability (Doucet, 1998). This is the well-known sample degeneracy, 
whereby the particles fail to correctly approximate posterior distribution.

The impact of this undesirable and unavoidable side effect can be mitigated by a resampling procedure, 
which makes it possible to restore sample variety without affecting characterization of the posterior distri-
bution. Gordon et al. (1993) proposed sequential importance resampling (SIR) to avoid sample degeneracy 
by introducing a resampling procedure at each time step. The additional resampling step enables to discard 
particles with a low probability and to replicate those with a high importance weight, while the total num-
ber of particles is maintained unchanged. Clearly, particles that are closer to the truth are more likely to be 
resampled, since the greater the weight of a particle, the higher the number of replications of that particle 
in the resulting particle set.

When applying the PF for the combined estimate of model states and parameters, the latter are resampled 
together with the particle states and then perturbed to prevent their sample impoverishment (Moradkhani, 
Hsu, et al., 2005).

3. Material and Methods
3.1. Watershed Set and Hydrometeorological Data

In order to extensively assess the performance of DA-based streamflow forecasts, this study relies on the 
large and varied set of 232 watersheds across France set up by Ficchì et al. (2016). According to the classi-
fication of the French river flow regimes by Sauquet et al. (2008), the great part of the watersheds is char-
acterized by pluvial river flow regimes. It is noteworthy that snowmelt-fed regimes are not represented in 
this catchment sample. However, few basins in a pluvio-nival regime are considered in the mountainous 
areas. Meteorological forcings are derived from the SAFRAN meteorological reanalysis (Vidal et al., 2010), 
providing both precipitation and temperature data series at the daily time step, which are aggregated at the 
watershed scale in this lumped application. Potential evapotranspiration is estimated from the SAFRAN 
temperature according to the temperature-based formulation proposed by Oudin et al. (2005). Daily stream-
flow data are available at each watershed outlet from the Banque HYDRO database (http://www.hydro.eau-
france.fr; Leleu et al., 2014). In order not to undermine the performance of the forecasting system through 
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the assimilation of possible unreliable observations, the quality of the measured discharges was investigated 
through both visual inspection of hydrographs and the quality code on the observation reliability (Delaigue 
et al., 2020). The analysis period is from January 01, 2006 to December 31, 2011.

3.2. Hydrological Model

GR5J is a daily lumped conceptual model (Le Moine, 2008; Pushpalatha et al., 2011). The rainfall–runoff 
processes are represented at the watershed scale through an interception function, two main stores, namely, 
production and routing stores, a unit hydrograph and an exchange function (Figure 1). The production store 
level (S) accounts for the evolution of the watershed soil moisture content at each time step, depending on 
both the incoming rainfall to the store (Ps) and the actual evapotranspiration drawn from the store (Es). The 
routing function relies on a nonlinear routing store (R) and a symmetric unit hydrograph for runoff lagging. 
The unit hydrograph states (UH) define the streamflow that is routed at each time step. The two runoff 
components (90% and 10% of effective rainfall Pr, respectively) are estimated. Inflows (outflows) from (to) 
the outside of the basin are simulated through a groundwater exchange function.

The rainfall–runoff model relies on five free parameters (reported in bold in Figure 1) requiring proper cali-
bration to optimize the accuracy of model simulations: the maximum capacities of both the production and 
routing stores (X1 [mm] and X3 [mm], respectively); a groundwater water exchange coefficient (X2, [mm/d]) 
taking either positive (i.e., water inflows) or negative (i.e., water outflows) values; the time base of the unit 
hydrograph (X4 [d]); the threshold for groundwater exchange (X5 [-]). The DA-based streamflow forecasting 
system was developed using the R package airGR (Coron et al., 2017, 2020), providing a constantly up-to-
date version of the GR5J model. The snow module was not activated, since no snow-dominated watershed 
is included in the dataset.

For each watershed, GR5J was calibrated throughout the 6-year analysis period using the Kling–Gupta effi-
ciency (KGE) coefficient (Gupta et al., 2009) as an objective function, evaluated as:

           
2 2 2

1 1 1 1KGE r a b (4)

where r is the linear correlation coefficient between simulated and observed streamflow; a is the ratio of 
the standard deviation of simulated discharges to the standard deviation of observed ones (i.e., an estimate 
of the relative variability between simulated and observed values); b is the ratio of the mean of simulated 
discharges to the mean of observed discharges (i.e., a measure of the overall bias). The optimal KGE value 
is 1. Figure 2 shows the evaluation of the KGE criterion resulting from the calibration procedure over the 
period 2006–2011. The KGE values reveal good performance of the GR5J model over most of the basins and 
in different hydrometeorological contexts (KGE values higher than 0.85 for 65% of watersheds).

3.3. Probabilistic DA-Based Forecasts

This study aims to assess the usefulness of estimating forecast ICs to improve the predictive accuracy of 
forecasts over a horizon of 10 days, in terms of both efficiency and temporal persistence. Therefore, DA-
based streamflow forecasts are performed daily starting from the updated ICs resulting from the assimila-
tion of the last available observation at the forecast time step (Figure 3, DA-IC). Thanks to more accurate 
ICs, DA-based forecasts are supposed to be more reliable than open loop (OL) predictions, which do not rely 
on the assimilation of observed discharges (Figure 3, OL-IC). It is noteworthy that both DA-based and OL 
streamflow forecasts are driven by perfect 10-day meteorological forecasts, namely, the posteriori observa-
tions of rainfall and potential evapotranspiration. This choice makes it possible to assess the performance 
of the DA-based forecasting system by preventing any superimposed effect of the unknown errors affecting 
meteorological forecasts.

3.3.1. Implementation Details of DA Schemes

Both the EnKF and the PF schemes consider the same state vector (Xt), which can encompass the produc-
tion store level (S), the routing store level (R) and the unit hydrograph state (UH) (Figure 4), depending 
on the experiments (see Section 3.4 for further details). When dealing with the dual estimation of both 
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state variables and model parameters, the latter (i.e., X1 and/or X3) can 
be included in the state vector, according to the augmented state vector 
approach (Section 3.3.4).

Because in this application there is an exact match between observations 
and their model equivalent (i.e., streamflow at the catchment outlet), the 
hydrological model serves as a forward model in the EnKF scheme. In-
deed, the GR5J model is used to map inputs to states and also to map 
states to observations. Error covariances are sampled from the ensemble 
and not explicitly formed (Evensen, 2003):

      


   
 , ,

1

1
1

nens T
T b b b b

t t i t i
i

P H x x H x H x
nens

 (5)

         


   
 , ,

1

1
1

nens T
T b b b b

t t i t i
i

HP H H x H x H x H x
nens

 (6)

where nens is the number of ensemble members and the overline denotes 
an average over the ensemble. PtHT is the nstate × nobs matrix of covar-
iance between the model states and the modeled streamflow, and HPtHT 
is the nobs × nobs matrix of model covariance at the gauging sites. It is 
noteworthy that in this lumped application discharge measurements are 
assimilated at catchment scale (i.e., nobs is equal to 1).

The SIR-PF scheme (Figure  4) relies on a stratified resampling (Kit-
agawa,  1996), which guarantees an ease of implementation and a low 
computational complexity (Douc & Cappé, 2005). Particle weights are re-
cursively updated at each assimilation time step, as a function of the like-
lihood of the ensemble streamflow values with respect to the observed 
discharge. Importance weights are initialized by assigning uniform im-
portance weights to the ensemble particles. Whenever an undesired en-
semble shrinkage hinders an efficient resampling procedure, due to the 
resulting almost equivalent likelihood values, the particle weights are as-
signed uniformly to prevent possible misleading updated states.

3.3.2. Constrained EnKF Analysis

Unlike the PF, the EnKF acts directly on the state variables of each en-
semble member in the analysis procedure through a corrective term ac-

counting for the uncertainty affecting both model predictions and observations. Hence, proper mass con-
straints are required to prevent possible inconsistencies that may occur owing to unfeasible values of model 
states resulting from the filter update. Possible inconsistent values of model states are likely to lead to unre-
liable streamflow simulations especially when the predicted streamflow is significantly different from the 
observed value (Maxwell et al., 2018). This downside is not experienced with the PF, which preserves the 
state consistency of each particle through the weighting and resampling procedure. When implementing 
the EnKF scheme in the GR5J model, mass constraints are required to guarantee the non-negativity of state 
variables (i.e., storage levels) by ensuring minimum state values. A further constraint is required to prevent 
the level of the production store from exceeding its maximum capacity. With the aim of training the filter 
on the threshold-based store parameterization, this latter constraint is also applied to the routing store, even 
though it may take higher levels than its capacity.

A mass constraint is applied before the forecast step, so that the level of production store (S) cannot drop be-
low 5 % of its capacity (X1). This constraint is needed to prevent numerical instabilities within the evaluation 
of the covariance matrices, as the store level drops to values close to zero in the case of low flow. However, 
under this condition, the constraint on the minimum store threshold is likely to undermine the forecast reli-
ability owing to the generation of possible spurious baseflow rates. It is noteworthy that this undesired issue 
does not affect the analysis of this study, as it occurs only in few watersheds during summertime. When 
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Figure 1. Scheme of the GR5J hydrological model (Le Moine, 2008). 
E, evapotranspiration; P, areal basin rainfall; Pn, net precipitation; En, 
net evapotranspiration; S, production store; Perc, percolation amount; R, 
routing store; Q9 and Q1, outputs of the unit hydrograph (UH); Q, total 
runoff.
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performing the joint state–parameter estimation, the store capacities are also limited to positive values. It 
is noteworthy that the same set of constraints is also used to prevent possible inconsistent values of state 
variables resulting from their perturbation (Section 3.3.4), which may compromise prediction reliability. 
Threshold-based control has been shown not to significantly distort the null-valued mean of perturbations.

3.3.3. Uncertainty in Meteorological Forcings

When dealing with ensemble-based DA techniques, the scale of spread of the ensemble simulations is one 
of the main critical issues. In the PF scheme, the most conducive condition calls for well-spread ensembles. 
Indeed, when the ensemble is squeezed, the resampling procedure is more challenging, since all the parti-
cles are close to each other, resulting in similar likelihood values. In this undesired case, the filter might not 
succeed in effectively discriminating the more likely ensemble members, since they are all assigned almost 
the same weight. On the other hand, if the particles are well spread, their resampling is more straightfor-
ward, since each particle is properly discriminated through a specific weight proportional to its likelihood. 
Because the EnKF quantifies the model error based on the variance between ensemble members, poor 
variance can affect the updating procedure by leading to overweighting the predicted states and weakly 
assimilating the observed ones. Conversely, an overly broad ensemble spread can lead to an overconfidence 
in observations, regardless of their reliability. Therefore, an effective representation of all different uncer-
tainties from meteorological forcings, model parameters and states, and observations is a crucial issue in 
DA. In order to properly take into account, the uncertainty of meteorological inputs, probabilistic mete-
orological forecasts are generated by stochastically perturbing the model forcings, namely, precipitation 
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Figure 2. Map showing the location of the 232 French basins and measurement stations used in this study. KGE values 
resulting from GR5J calibration are reported. KGE, Kling–Gupta efficiency.
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and potential evapotranspiration. This approach makes it possible to rely on a well-representative range of 
weather scenarios.

Ensemble meteorological forecasts are generated by perturbing in situ meteorological observations with 
multiplicative stochastic noise applied at each time step (i.e., daily), according to the methodology proposed 
by Clark et al. (2008). The random perturbations are provided by a first-order autoregressive model in or-
der to guarantee physical consistency and temporal correlation of the time-variant forcings. Indeed, this 
approach accounts for time-variant model errors, which are supposed to be more representative of model 
uncertainty than temporally constant ones. To generate perturbations of both meteorological variables, the 
fractional error parameter is set to 0.65 and the temporal decorrelation length is defined as 1 day for rainfall 
and 2 days for potential evapotranspiration.

3.3.4. Uncertainty in Model Parameters and State Variables

Of the several uncertainties affecting hydrological predictions, meteorological forcings are among the most 
relevant. However, perturbation of the meteorological data alone is unlikely to comprehensively represent 
system uncertainties, especially during drought periods. Indeed, when no precipitation events occur, the 
spread of the ensemble hydrological simulations is generally greatly reduced (Figure 5).

In order to prevent ensemble shrinkage, even in the absence of precipitation, further uncertainties can be 
represented through the introduction of additional stochastic noise. Indeed, while the perturbation of mete-
orological forcings accounts for uncertainties in model input, the perturbation of model states and parame-
ters allows for a representation of the uncertainty in the model itself (Clark et al., 2008; Reichle et al., 2002).

According to the methodology proposed by Moradkhani, Hsu, et al. (2005), at each assimilation time step af-
ter the analysis procedure, both model states (Figure 6) and parameters (Figure 7) can be perturbed through 
normally distributed null-mean noise. The noise variance is assumed equal to the variance of the internal 
variables resulting from the analysis procedure. However, in order to avoid model instabilities due to large 
changes in the perturbed internal variables and to assure minimum process noise by preventing ensemble 
collapse, variance is restricted between upper and lower limits (Salamon & Feyen, 2009).

In order to properly set the variance ranges, several tests were performed to assess the sensitivity of the 
DA performance to different limit values of the noise variance. Each test was repeated several times by 
varying the variance ranges for each internal variable and evaluating the impact on filter performance over 
the longest possible analysis period according to the available discharge observations at each basin. The 
initial variance ranges for each internal variable were defined starting from the assessment of the annual 
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Figure 3. Scheme of the forecasting system. The simulated initial conditions (OL-IC) are updated through assimilation 
(DA-IC).
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Figure 4. Schematic representation of the sequential data assimilation (DA) algorithms. The prediction step (a) provides an ensemble of a priori estimates 
of model states (i.e., the blue dots; the blue curve is the non-Gaussian prior distribution). When an observation Y is available (b) (i.e., the orange triangle; the 
orange curve is the Gaussian observation error distribution), it is assimilated within the update step (c) to estimate the analysis state. The ensemble Kalman 
filter (EnKF) assumes a Gaussian prior distribution (i.e., the blue dashed curve) to evaluate the Kalman gain (Kt) and the analysis states  a

tX . In the particle 

filter (PF) scheme, the importance weights are updated according to the likelihood value of each particle with respect to the observation. The sizes of the 
particles (dark gray circles) are proportional to their weights. In the resampling procedure, samples with negligible weights are removed (light gray crosses), 
while samples with large weights are replicated (light gray circles) to restore ensemble size and to avoid filter degeneracy. Because this is a sequential DA 
scheme, the propagated model analysis states (i.e., the red dots) resulting from the update step t (c) are the initial states at the following prediction time step 
t + 1 (a).
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variability of each state variable throughout the whole analysis period and the variability of model param-
eters over all the selected basins. It is noteworthy that all the tests were performed for a given observation 
error (see Section 3.3.5).

A sensitivity analysis allowed selection of the parameters exerting the most influence on model simulations, 
namely, the capacities of the production (X1) and routing (X3) stores. This preliminary study was performed 
by making the parameters vary within proper ranges and analyzing the impact of their variation on the 
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Figure 5. Ensemble streamflow simulation accounting for meteorological uncertainty. The ensemble mean and spread 
are shown in red, and the OL discharge simulation is shown in blue.

Figure 6. An example of DA-based ensemble simulations of the levels of both the production (S) and routing (R) stores 
for the Avre River (watershed of 495 km2). The ensemble mean is reported in red, the ensemble spread in light blue.
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resulting model predictions. Parameter ranges were estimated in order to avoid model numerical insta-
bilities and to comply with possible constraints (from 0.01 mm to 5,000 mm for the production store and 
2,000 mm for the routing store).

Since the dual estimate (Moradkhani, Sorooshian, et al., 2005) entails a higher computational time and 
both the limited system dimensionality and the small number of model states and parameters reduce the 
occurrence of possible spurious correlations (Xie & Zhang, 2013), the augmented state vector approach is 
applied to the GR5J model in this study.

3.3.5. Observational Uncertainty

While it is of key importance to ensure a well-spread ensemble to properly represent model uncertainties, 
it is also critically important to estimate the observation error, since this defines how the filter trusts the ob-
servations and, thus, to what extent they are assimilated into the model. The uncertainty in discharge obser-
vations is mainly due to the instrumental error and the uncertainty in the rating curve (Clark et al., 2008). 
In this study, measurement noise is generated from a normal distribution with a zero-valued mean and a 
variance ( 2

obs) parameterized as a function of the observed streamflow rate (Qobs) (Clark et al., 2008; Weerts 
& El Serafy, 2006):

  
22

obs obs obsQ (7)

According to preliminary analyses assessing the sensitivity of filters to the observation error, the error pa-
rameter obs was set to 0.1. In order to prevent underestimated error variances in the case of low discharge, 
the quantile 10 (Q10) of streamflow observations was assumed as the minimum threshold value to define the 
error variance. Indeed, following the approach proposed by Thirel et al. (2010), for streamflow values below 
Q10, the variance is evaluated proportionally to 2

10Q .
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Figure 7. An example of DA-based ensemble simulations of the capacities of both the production (X1) and routing (X3) 
stores for the Célé River (1,194 km2). The ensemble mean is reported in red, the ensemble spread in light blue.
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3.4. Experimental Setup

Several experiments are performed with the aim of assessing both the benefit of updating different model 
states and parameters and the impact of considering several sources of uncertainty when estimating more 
accurate DA-based forecast ICs. Indeed, the main purpose is to identify the critical uncertainties to be tak-
en into account and the key model states and parameters to be updated via DA to efficiently improve the 
forecasting skill of a conceptual rainfall–runoff model. Furthermore, the performance of the EnKF and PF 
schemes is assessed and compared in terms of both forecasting accuracy and temporal persistence of the 
updating effect.

Table  1 lists all the experiments. “A” experiments aim at assessing the usefulness of updating the state 
variables (i.e., S, R, UH stocks) when considering only the uncertainty of the meteorological forcings (Sec-
tion 3.3.3). In order to identify the most relevant state variables, namely those model states that guaran-
tee the largest improvement of the forecast ICs if updated, the benefit achieved through the EnKF-based 
update of each state variable is evaluated (Exps. A2, A3, A4). For instance, the experiment EnKF_A3 as-
sesses how the EnKF-based update of the initial level of the routing store (R) impacts the forecasting skill 
when accounting for meteorological uncertainty. Therefore, in this case, the state vector includes only R 
(Section 3.3.1).

“B” experiments are designed to investigate the potential of jointly updating both state variables and model 
parameters (i.e., X1, X3). In addition to meteorological uncertainty, these experiments (Exps. B1–B3) also 
take account of the uncertainty in the parameter estimation (Section 3.3.4). For example, the experiment 
PF_B1 aims to evaluate the impact on the accuracy of the forecast ICs when the initial level of the produc-
tion store (X1) is jointly updated together with all the state variables by allowing for the uncertainty of the 
X1 estimate as well as meteorological perturbations. Consistently, the state vector encompasses S, R, UH 
and X1 in that case.

“C” experiments aim to assess whether the introduction of the uncertainty of the state variables (Sec-
tion 3.3.4) can affect the DA-based update of the forecast ICs and the resulting impact in terms of predictive 
skill. Consistent with A experiments, also in this case, the most relevant state variables are investigated in 
the experiments C2–C4.

According to the experimental setup (Table 1), in each experiment the ensemble of model states is generat-
ed by introducing some system noise through the stochastic perturbation of specific variables. To properly 
initialize the ensemble, all experiments rely on a one-year model warm-up period just preceding the start 
of the analysis period. According to the results of a preliminary analysis of sensitivity to the ensemble size, 
all the experiments rely on an ensemble of 100 members, which guarantees stable performance for both the 
DA schemes in this application to a lumped conceptual model. It is noteworthy that the PF generally reveals 
higher sensitivity to the ensemble size than the Kalman filter. Furthermore, to consistently compare the two 
analyzed DA techniques, the same noise statistics are used in all experiments.

3.5. Evaluation Metrics

In order to ensure a proper comparison of the performance of the EnKF and PF schemes, the evaluation 
metrics are computed against the OL probabilistic predictions, which are assumed as the benchmark in all 
experiments to assess updating effects.

To avoid possible misevaluation, over and underevaluation, both deterministic and probabilistic verification 
metrics are evaluated for each lead time to properly analyze the different attributes of streamflow forecasts 
(Anctil & Ramos, 2018). The root mean square error (RMSE) is evaluated for the single-valued ensemble 
mean forecast, with the aim of evaluating model accuracy (lower values indicate better forecasts).

The overall accuracy of DA-based forecasts is assessed against the accuracy of OL predictions by evaluating 
the continuous ranked probability skill score (CRPSS) (R package verification; NCAR Research Applications 
Laboratory, 2015), according to the formula:

 1
OL

CRPSCRPSS
CRPS (8)
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where the continuous ranked probability score (CRPS) measures the quadratic distance between the cu-
mulative distribution of the forecasts and the cumulative distribution of the observations of the predicted 
variable (Hersbach, 2000). A CRPSS value closer to 1 is preferred, since this indicates a lower CRPS value 
than the reference OL value (CRPSOL).

To investigate the reliability of the DA-based forecasts in discriminating between events and nonevents, 
the so-called area under the receiver operating characteristics (ROC) curve (AUC) is analyzed (R package 
ROCR; Sing et al., 2005), which is a comprehensive summary measure of the discrimination capability of 
the forecast. AUC values range between 0 (i.e., no distinction between event and no event) and 1 (i.e., per-
fect score), where a value of 0.5 identifies no skill (Yesilnacar, 2005). In order to evaluate ROC curves and 
the resulting AUC values, the 90th quantile of the time series of the observed discharges is considered as the 
overflow threshold, enabling one to identify the occurrence of an event.

4. Results
4.1. The Impact of Meteorological Uncertainty on DA-Based Forecasts

The A experiments aim to assess the usefulness of DA-based estimation of forecast ICs to improve predic-
tive accuracy, when accounting for the uncertainty of the meteorological forcings. The EnKF-based fore-
casts (EnKF_A1) outperform the PF-based ones (PF_A) in terms of predictive accuracy (RMSE) up to a 
3-day lead time (Figure 8). However, it is noteworthy that the PF-based estimates of forecast ICs guarantee 
a longer-lasting improvement of forecasting skill compared to the EnKF-based updating effect, which de-
creases more sharply in the short term.

In terms of CRPSS, the estimation of forecast ICs benefits the most from the EnKF-based update of the 
initial level of the routing store (EnKF_A3), with a resulting improvement in forecast accuracy up to 5 days 
compared with the reference (OL) (Figure 9). A much lower improvement is achieved by updating the ini-
tial level of the production store (EnKF_A2), which does not succeed in efficiently improving forecast accu-
racy compared to OL predictions. It is noteworthy that the forecasting system reveals negligible sensitivity 
to updating of the unit hydrograph state (EnKF_A4), as the quantities of water stored in unit hydrographs 
are much lower than in model stores. The evaluation of CRPSS values reveals the poor usefulness of the PF-
based estimate of forecast ICs to enhance predictive accuracy compared with the OL probabilistic forecasts, 
even for the very short lead time (Figure 9).

In terms of AUC, the forecasting system succeeds in properly discriminating the occurrence of thresh-
old-exceeding events, even without relying on updated forecast ICs (Figure 10). Both EnKF- and PF-based 
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Experiment ID Exps. A Exps. B Exps. C

Updated variables ICs ICs and parameters ICs

Uncertainty Met. Inputs Met. inputs and model parameters Met. inputs and model states

EnKF PF EnKF PF EnKF PF

1 S, R, UH S, R, UH S, R, UH, X1 S, R, UH, X1 S, R, UH S, R, UH

2 S - S, R, UH, X3 S, R, UH, X3 S S, R, UH

3 R - S, R, UH, X1, X3 S, R, UH, X1, X3 R S, R, UH

4 UH - - - UH S, R, UH

Note. Updated variables are listed for each experiment; perturbed variables are given in bold. All experiments rely on 
the same ensemble of perturbed meteorological observations.
Abbreviations: EnKF, ensemble Kalman filter; Exps., experiments; ICs, initial conditions; ID, identification; Met., 
meteorological data; PF, particle filter; R, routing store level; S, production store level; UH, unit hydrograph state; X1, 
production store capacity; X3, routing store capacity.

Table 1 
Experiment Notes
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estimates of forecast ICs (EnKF_A1, PF_A) improve the event discrimination capability up to a 6-day lead 
time. The most benefit in terms of AUC values stems from the EnKF-based estimation of the initial level of 
the routing store (EnKF_A3).
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Figure 8. Experiments A: trends in median root mean square error (RMSE) values of the ensemble mean discharge 
forecasts, evaluated over all the gauging stations for lead times ranging from 1 to 10 days. OL, open loop; PF, particle 
filter; EnKF, ensemble Kalman filter.

Figure 9. Experiments A: trends in median continuous ranked probability skill score (CRPSS) values of discharge 
forecasts, evaluated over all the gauging stations for lead times ranging from 1 to 10 days. The upper and lower whiskers 
are the 25th and 75th percentiles of CRPSS values, respectively. PF, particle filter; EnKF, ensemble Kalman filter.
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4.2. The Usefulness of the Joint DA-Based Estimation of Forecast Initial States and Parameters

The main purpose of the B experiments is to assess the benefit of the DA-based update of both model states 
and parameters through their combined estimation to provide more accurate forecast ICs. The DA-based 
estimation of the capacity of the production store at the forecast time (Exp. B1) does not result in any signif-
icant further improvement in predictive accuracy compared with the previous experiments. Conversely, the 
forecasting system reveals high sensitivity to the initial capacity of the routing store (Exp. B2), as its updat-
ing results in differing performance of the two analyzed DA schemes. Compared to experiment EnKF_A1, 
the joint estimation of the initial routing capacity (EnKF_B2) allows for higher predictive accuracy in the 
very short term, with a negligible benefit of the updating effect even at a 2-day lead time (Figure 11). Con-
versely, the PF-based estimation of the initial capacity of the routing store (PF_B2) significantly undermines 
forecast reliability due to suboptimal ICs, compared to OL predictions.

4.3. The Impact of State Uncertainty on DA-Based Forecasts

The C experiments are focused on the impact of state uncertainty on the DA-based estimation of the fore-
cast ICs, in terms of both forecasting accuracy and temporal persistence of the updating effect. Consistent 
with the results of A experiments, the EnKF-based forecasts benefit the most from the updating of the initial 
level of the routing store (EnKF_C3), in terms of RMSE (Figure 12). Even though the uncertainty in the es-
timate of the routing store level allows for a larger improvement of forecast ICs compared to the EnKF_A3 
experiment, the accuracy of the EnKF-based forecasts decreases even more sharply within a 3-day lead time 
compared with the PF-based ones. Conversely, state uncertainty undermines the accuracy of forecast ICs 
through the DA-based estimate of the production store level (EnKF_C2). Updating the unit hydrograph 
state (EnKF_C4) still does not improve forecasting skill, even when accounting for state uncertainty.

PF-based forecasts reveal consistent sensitivity to state uncertainty in terms of predictive accuracy. Indeed, 
compared with the PF_A experiment, the accuracy of forecast ICs is more efficiently improved when ac-
counting for uncertainty in the estimate of the initial level of the routing store (PF_C3). While uncertainty 
in the estimate of the unit hydrograph state allows for slightly more accurate forecast ICs (PF_C4), forecast-
ing skill is undermined when accounting for uncertainty of the production store level (PF_C2). It is note-
worthy that the EnKF (EnKF_C1) outperforms the PF (PF_C1) in terms of RMSE, especially in the short 
term, by providing more accurate forecast ICs.

The assessment of CRPSS values stresses the key benefit of accounting for the uncertainty in the initial 
level of the routing store, which guarantees the most efficient improvement of IC accuracy up to a 5-day 
lead time through the PF-based update of model states (PF_C3) (Figure 13). When taking account of the 
uncertainty of all states, the PF-based forecasts (PF_C1) outperform the EnKF-based ones (EnKF_C1), as 
they allow for the highest forecasting accuracy compared to the reference OL predictions.
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Figure 10. Experiments A: boxplot of area under the curve (AUC) values for all the gauging stations at lead times of 1, 
3, 6, and 9 days. OL, open loop; PF, particle filter; EnKF, ensemble Kalman filter.
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Compared with the A experiments, the event discrimination capability of the forecasting system is signif-
icantly enhanced through both the PF- and EnKF-based estimation of forecast ICs, accounting for the un-
certainty of the routing store level (PF_C3, EnKF_C3), especially in the short term (up to a 4-day lead time) 
(Figure 14). Conversely, no further improvement can be inferred from the AUC values of the DA-based 
forecasts relying on the uncertainty of the other two state variables.

4.4. The Impact of DA-Based Updating Procedures on Model States

Compared to the PF, the EnKF reveals a higher rate of accuracy decay with increasing lead time. According 
to Dumedah and Coulibaly  (2013), the more steady accuracy of PF-based forecasts suggests that the se-
quential updates of model internal variables are not overly disruptive. Conversely, the introduction of new 
observed information in the EnKF scheme can overwhelm the background knowledge or overly drive the 
assimilation towards itself. The limited performance of the EnKF is mainly related to the update of the state 
variables by using linear updating rules based on covariance information of both model states and observa-
tions (Noh et al., 2013). The Gaussian approximation can result in a suboptimal estimation of the filtering 
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Figure 11. Experiments B: trends in median continuous ranked probability skill score (CRPSS) values of discharge 
forecasts, evaluated over all the gauging stations for lead times ranging from 1 to 10 days. As reference, experiments A 
are reported as dotted lines. EnKF, ensemble Kalman filter; PF, particle filter.
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probability density function, which is likely to lead to possible inconstancies affecting the updated state of 
the realizations (Pasetto et al., 2012).

Even though the GR5J model is not strongly nonlinear, the low correlation between discharge measure-
ments and some of the state variables can hinder the EnKF from properly retrieving these latter. Therefore, 
a rapid decline of the predictive accuracy of EnKF-based forecasts can occur when forecasting for longer 
lead times.

Unlike the EnKF, all information in the ensemble is duplicated in the PF resampling step, which prevents 
numerical instabilities and increases forecasting accuracy (Noh et al., 2013). Indeed, in the update step the 
PF duplicates the realizations that are closer to the observations and thus it preserves both the system mass 
balance and the overall state consistency of each particle (Noh et al., 2018), instead of directly correcting the 
internal variables based on the discharge residuals.

Because the difference in the temporal persistence of the EnKF- and PF-based updating effect is supposed 
to be mainly related to the different analysis procedure of these two DA techniques, the impact of DA-based 
updates on model states (i.e., levels of production and routing stores) is assessed. The two sequential DA 
techniques are compared by evaluating the differences between the background and analysis states result-
ing from both the updating procedures. As expected, Figure 15 shows that the PF-based analysis procedure 
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Figure 12. Experiments C: trends in median root mean square error (RMSE) values of the ensemble mean discharge 
forecasts, evaluated over all the gauging stations for lead times ranging from 1 to 10 days. OL, open loop; EnKF, 
ensemble Kalman filter; PF, particle filter.
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generally results in smaller updates of state values than the EnKF scheme, especially for the production 
store (S).

Although larger correction terms result in a more effective update of model states, they are more likely to 
lead to possible inconsistencies in the resulting values of state variables, in spite of proper mass constraints 
(Section 3.3.2) and limited system perturbations. Consequently, the persistence of the updating effect can be 
significantly reduced, since the model tends to restore state variables consistent with the model physics. On 
the other hand, even though a weaker update of state variables leads to poorer filter efficiency in improving 
forecast ICs, it generally lasts longer over the forecast horizon.

5. Discussion
Compared with PF-based forecasts, EnKF-based estimates of forecast ICs guarantee a greater improvement 
in predictive accuracy in the short term, when accounting only for meteorological uncertainty (Exps. PF_A 
and EnKF_A1 in Figure  8). Indeed, a noncomprehensive representation of the system uncertainties re-
stricted to only the model forcings undermines the efficiency of the PF-based estimation of forecast ICs. 
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Figure 13. Experiments C: trends in median continuous ranked probability skill score (CRPSS) values of discharge 
forecasts, evaluated over all the gauging stations for lead times ranging from 1 to 10 days. As reference, experiments A 
are reported as dotted lines. EnKF, ensemble Kalman filter; PF, particle filter.
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Especially in no-rain periods, the reduction in the ensemble spread makes the particle resampling pro-
cedure more challenging, since the filter might not succeed in effectively discriminating the more likely 
particles owing to almost equivalent importance weights.

State uncertainty has a different impact on the usefulness of PF- and EnKF-based estimations of forecast 
ICs, in terms of both efficiency and temporal persistence of the updating effect (Exps. C). A more compre-
hensive representation of both meteorological and state uncertainties allows for an enhanced benefit of 
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Figure 14. Experiments C: boxplot of area under the curve (AUC) values for all the gauging stations at lead times of 1, 
3, 6, and 9 days. OL, open loop; EnKF, ensemble Kalman filter; PF, particle filter.

Figure 15. Scatterplot of the differences between background and analysis states resulting from particle filter (PF)- and 
ensemble Kalman filter (EnKF)-based updating procedures. The dash-dotted lines are the regression lines.
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PF-based estimates of forecast ICs (Exps. PF_A1 and PF_C1 in Figure 13). Indeed, a larger spread of the 
ensemble simulations entails a more straightforward weighting and, thus, more efficient resampling of par-
ticles. In the case of the EnKF, higher model error covariance can lead to an overweighting of observations 
in the analysis procedure.

While the PF-based updating effect is longer lasting over the forecast horizon (Noh et al., 2013), the benefit 
of larger corrective terms for the EnKF rapidly decreases within a short lead time (Thiboult et al., 2016). The 
difference in the rate of accuracy decay (Exps. EnKF_C1 and PF_C1 in Figure 12) is mainly related to the 
different updating schemes of the two DA techniques. Indeed, whenever the Gaussian approximation in the 
EnKF scheme leads to possible inconsistencies affecting the updated states, the system tends more quickly 
to restore state variables consistent with the model physics (Pasetto et al., 2012). This issue is likely to be 
even more recurrent when enlarging the model error covariance by state perturbation (Exps. EnKF_A3 and 
EnKF_C3 in Figure 13). Hence, mass constraints are needed to prevent possible misleading state values 
resulting from the EnKF-based update (Maxwell et al., 2018).

Among hydrological processes, routing dynamics has the highest impact on the accuracy of DA-based es-
timates of forecast ICs (Exp. EnKF_A3 and Exps. C3). Indeed, updating of the forecast initial level of the 
routing store allows for the most significant improvement in predictive accuracy (Exps. C3 in Figure 13). 
The DA-based estimate of the production store level is generally less efficient at improving forecasting 
accuracy (Exp. EnKF_A2 and Exps. C2), since in GR5J model the level of the production store is less cor-
related with the observed discharge than the routing store level. Therefore, the increase in the ensemble 
spread due to the uncertainty in the estimate of production store level can even be more counterproductive 
(Exps. EnKF_A2 and EnKF_C2 in Figure 13). It is noteworthy that the relative importance of the states of 
the production and routing stores and their different correlation with streamflow observations do not vary 
consistently with the main topographic (e.g., watershed surface) and hydroclimatic (e.g., hydrologic regime) 
conditions of catchments.

The DA-based update of the unit hydrograph state at the forecast time (Exp. EnKF_A4 and Exps. C4) cannot 
be deemed an efficient approach to enhancing streamflow forecasting skill, since the forecasting system 
generally reveals negligible sensitivity to the estimation accuracy of this variable (Exps. C4 in Figure 13). 
Indeed, unlike the other state variables (i.e., store capacities), updating the unit hydrograph state concerns 
only modest water quantities, which are not likely to significantly impact the water balance of the system 
throughout the forecast horizon.

The DA-based estimation of forecast parameters is a more critical issue, since the forecasting system reveals 
high sensitivity to parameter uncertainty (Exps. B). Indeed, because store capacities govern the simulated 
hydrological responsiveness of the basin (see Section 3.2), their DA-based update can significantly modify 
the system response to meteorological forcings (Exp. PF_B3 in Figure 11). This implies that the parameter 
values updated by the assimilation of the observed discharge at the forecast time may not be the optimal 
ones to represent the model response over the entire 10-day forecast horizon. Indeed, the updated parame-
ter values are specifically estimated to optimally fit the available observations up to forecast initialization by 
adjusting the model response to the prevailing hydroclimatic conditions. Therefore, the analysis values of 
store capacities can significantly differ from their calibrated values (see Section 3.2) that are used in the OL 
probabilistic forecasts. Indeed, while the calibrated values of model parameters ensure to optimize the av-
erage model responsiveness, their analysis values are generally optimal only close to the forecast time step. 
This is especially the case with the EnKF-based estimates of forecast parameters, which significantly affect 
predictive quality over the forecast horizon, even though they succeed in improving forecasting accuracy in 
the very short term (Exps. EnKF_B3 in Figure 11). The DA-based estimation of production store capacity 
(Exps. EnKF_B1 and PF_B1 in Figure 11) does not significantly improve predictive accuracy. Indeed, along 
with its low correlation with the observed discharges, the update of this model parameter is likely to result 
in a smooth effect on the model hydrological response in the longer term. Conversely, the forecasting system 
reveals high sensitivity to the updating of routing capacity (Exp. B2), which promptly affects the hydro-
logical response of the model even in the very short term. While the EnKF succeeds in correctly updating 
this model parameter (Exp. EnKF_B2 in Figure 11), thanks to its higher correlation with the observed dis-
charges, its PF-based estimation is generally suboptimal (Exp. PF_B2 in Figure 11). It is noteworthy that the 
DA-based estimation of forecast parameters may be affected by the equifinality issue (Thiboult et al., 2016), 
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when accounting for parameter uncertainty. In this undesired case, since single-member simulations are 
equally likely, the DA-based estimation of forecast parameters may provide suboptimal estimates. The PF-
based analysis is mainly affected by the equifinality issue, which undermines forecast accuracy owing to a 
misrepresentation of system hydrological responsiveness. The limitation of parameter perturbation is not 
an efficient approach to reliably prevent possible overdispersion of parameter values (Noh et al., 2011b).

The results of this study stress the critical importance of a comprehensive representation of system uncer-
tainties to derive the most benefit from the DA-based estimation of forecast ICs. The predictive accuracy is 
differentially sensitive and affected by each source of model uncertainty, which is likely to have a differing 
impact depending mainly on the choice of DA technique and modeling scheme. This is the case for thresh-
old-based processes involved in the model dynamics, which can significantly undermine the propagation 
of meteorological uncertainty to the forecast initial states, leading to overconfidence in forecast ICs. The 
perturbation of model states can be an effective approach to jointly account for different sources of un-
certainty affecting model predictions. However, it is of key importance to perform preliminary analyses 
in order to identify the model states most correlated with the assimilated observation, whose perturbation 
can allow for a more effective DA-based improvement of predictive accuracy. Conversely, the combined 
effect of the increase in the state variances and their slight correlation with the observed quantity can lead 
to a suboptimal estimation of their initial values. The uncertainty in model parameters is a more critical 
issue, as their suboptimal estimation can significantly undermine predictive accuracy due to a misleading 
representation of the hydrological response of the watershed throughout the forecast horizon. While the 
updating of forecast parameters can be challenging especially for conceptual models, it is likely to be more 
straightforward in physically based models, where parameters are generally more closely correlated with 
the assimilated variables.

6. Conclusions
This study addresses the sensitivity of DA-based estimation of streamflow forecast ICs to several sources 
of uncertainty and to the update of different states and parameters of the GR5J conceptual rainfall–runoff 
model, in terms of efficiency as well as temporal persistence. Both the EnKF and the PF schemes reveal 
straightforward applicability and effective usefulness to improve predictive accuracy by the assimilation of 
observed discharges at the forecast time.

When dealing with the assimilation of streamflow observations into a conceptual reservoir-based hydro-
logical model, the main interest should be focused on improving the estimate of the initial level of the 
routing store in order to derive the most benefit from the DA-based estimation of forecast ICs (Rakovec 
et al., 2012, 2015).

When accounting only for meteorological uncertainty, EnKF-based forecasts outperform PF-based ones in 
terms of predictive accuracy. Indeed, since the latter technique is more sensitive to ensemble spread, during 
no-rain periods, the PF-based estimate of forecast ICs can result in less accurate streamflow forecasts.

A comprehensive representation of both meteorological and state uncertainties allows for a more efficient 
improvement of predictive skill. Indeed, while the accuracy of the PF-based estimation of forecast ICs is 
greatly improved, with a longer-lasting updating effect, the efficiency of the EnKF is enhanced only in the 
forecast short term.

Results show that parameter uncertainty can undermine predictive accuracy, since the DA-based estimate 
of forecast parameters is likely to significantly modify hydrological responsiveness through the update of 
production as well as routing store levels. In order to further assess the usefulness of the DA estimate of 
forecast parameters, an extensive analysis should be undertaken to compare the performance of the EnKF 
state augmentation with other approaches, such as the dual estimation proposed by Moradkhani, Hsu, 
et al. (2005). Furthermore, the efficiency of the kernel smoothing of parameters should be investigated to 
prevent possible over and underdispersion (Xie & Zhang, 2013).

When using the conceptual rainfall-runoff GR5J model, the suitability of the EnKF and PF schemes for 
streamflow forecasting mainly depends on the forecast horizon and the ultimate objectives of predictions. 
Indeed, while EnKF-based forecast ICs succeed in more efficiently improving predictive accuracy in the 
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short term, the PF-based estimation of forecast ICs guarantees a longer-lasting updating effect over the fore-
cast horizon. Even though a PF-based forecasting system can be computationally more expensive owing to 
the large number of particles required (Weerts & El Serafy, 2006), this burden can be easily and effectively 
managed by parallelization (Noh et al., 2013). In this lumped application, the EnKF and PF schemes do not 
reveal a significant difference in computational time (about 10 min to perform daily DA-based simulations 
over the 6-year analysis period). In this regard, it will be useful to test the robustness and effectiveness of 
this DA-based forecasting system at the hourly time step, in order to assess its potentialities for short-term 
operational real-time forecasting.

This study is intended to provide useful recommendations to be referred to when dealing with DA-based 
forecasting systems relying on conceptual hydrological models.

The sensitivity of a forecasting system needs to be specifically investigated, as it largely depends on the 
modeling scheme and its representation of hydrological processes. When dealing with physically based 
hydrological models, the potential of DA-based estimates of forecast parameters needs to be assessed. 
Indeed, a higher correlation of the observed quantities with the model parameters describing physical 
processes is supposed to mitigate the equifinality issue. It is noteworthy that the benefit in updating 
specific state variables also depends on the assimilated observations. When assimilating observations 
of the surface soil moisture, the DA-based estimation of the forecast initial states of the production 
module can be a more suited approach to improve the predictive skill, rather than those of the routing 
module.

The spatial analysis of the performance of the DA-based forecasting system at the 232 analyzed water-
sheds revealed that the predictive accuracy does not depend on the local catchment conditions. Indeed, 
no apparent relationship can be identified between reliability of the DA-based forecasts and both topo-
graphic (e.g., surface, slope, altitude) and hydroclimatic (e.g., hydrological regime) parameters. However, 
it is noteworthy that the great part of the French catchments included in the analyzed dataset is char-
acterized by pluvial river flow regimes. Therefore, further assessments are needed to investigate specific 
case studies that are not included in the analyzed sample, namely watersheds affected by severe drought 
periods, snowmelt dynamics or groundwater upwelling. However, it is noteworthy that the most ruling 
factor affecting the DA-based forecasting system is still the quality of the observations to be assimilated.

The proposed testing procedure can be generally useful to design a new forecasting system by properly 
identifying the most suitable DA method and its optimal configuration, as well as to diagnose possible defi-
ciencies in existing forecasting systems.
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Reference DA technique Main system settings Hydrological model Key results

Thiboult et al. (2016) EnKF Different sources of 
uncertainty and ensemble 

sizes

20 conceptual lumped models 
(20 basins)

EnKF-based updating effect fades 
quickly

Maxwell et al. (2018) EnKF Uncertainty of model states, 
100 members

Lumped conceptual model 
(1 basin)

Need for combined mass and flux 
constraints

DeChant and 
Moradkhani (2011)

PF Uncertainty in meteorological 
inputs, 500 members

SAC-SMA model (1 basin) Importance of the representation 
of IC uncertainty

Weerts and El Serafy (2006) EnKF vs PF Uncertainty in meteorological 
inputs, different ensemble 

sizes

HBV-96 model (16 
sub-basins)

PF outperforms EnKF for a larger 
number of particles; lower 

sensitivity of EnKF to system 
uncertainties

Noh et al. (2013) EnKF vs PF Uncertainty in model states WEP model (1 basin) Higher and longer-lasting 
accuracy of PF-based forecasts

Table A1 
A Nonexhaustive List of the Studies Reported in the Literature Review
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Data Availability Statement
Meteorological data can be freely provided by Météo France, upon request, (https://publitheque.meteo.f) 
for research and nonprofit purposes. Streamflow data are publicly available on the Banque Hydro website 
http://hydro.eaufrance.fr/. An R package named airGRdatassim (Piazzi & Delaigue, 2021) is available on 
GitLab (https://gitlab.irstea.fr/HYCAR-Hydro/airgrdatassim). airGRdatassim is a package based on the air-
GR hydrological modeling package and it provides the tools to perform the assimilation of the observed dis-
charges via Ensemble Kalman filter or Particle filter, according to the methodology presented in this paper.
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Reference DA technique Main system settings Hydrological model Key results

Moradkhani, Sorooshian, 
et al. (2005)

EnKF (dual estimation) Uncertainty in model inputs 
and parameters, 50 

members

HyMOD (1 basin) Kernel smoothing to prevent 
over and underdispersion of 

parameter values

Xie and Zhang (2013) EnKF (dual estimation) Uncertainty in model 
parameters and 

precipitation

SWAT model (20 sub-basins) Potential of an EnKF-based 
partitioned forecast-update 

scheme

Moradkhani, Hsu, 
et al. (2005)

PF (dual estimation) Uncertainty in model 
parameters and inputs, 

1,000 particles

HyMOD model (1 basin) Accurate state–parameter 
uncertainty estimation

Note. Each research study is characterized by the analyzed data assimilation (DA) technique/s, the system settings, the hydrological model used, and the key 
results.

Acknowledgments
The authors would like to thank 
Météo-France and SCHAPI for 
providing climate and streamflow 
data, respectively. This work was 
supported by the French Ministry of 
Ecology (DPGR/SNRH/SCHAPI, grant 
2102615443), by the RenovRisk-Trans-
fert project (OSU-Réunion, FEDER), by 
the SPAWET project (Centre national 
d’études spatiales, programme TOSCA) 
and by the PICS project (Agence nation-
ale de la recherche, grant ANR – 17 – 
CE03 – 0011). The authors thank Wade 
Crow, Albrecht Weerts and an anony-
mous reviewer for their constructive 
comments, which helped to improve 
the quality of the article.

https://publitheque.meteo.f
http://hydro.eaufrance.fr/
https://gitlab.irstea.fr/HYCAR-Hydro/airgrdatassim
https://doi.org/10.5194/hess-17-1161-2013
https://doi.org/10.1016/j.jhydrol.2014.06.035
https://doi.org/10.1016/j.envsci.2012.01.008
https://doi.org/10.1002/met.1328
https://doi.org/10.1007/978-3-642-40457-3_3-1
https://doi.org/10.1007/978-3-642-40457-3_3-1
https://doi.org/10.1109/78.978374
https://webgr.inrae.fr/wp-content/uploads/2012/07/2010-BERTHET-THESE.pdf
https://webgr.inrae.fr/wp-content/uploads/2012/07/2010-BERTHET-THESE.pdf
https://doi.org/10.1080/02626667.2019.1620507
https://doi.org/10.1126/science.aan2506
https://doi.org/10.1016/j.envsoft.2007.06.010
https://doi.org/10.1007/978-3-642-40457-3_54-1
https://doi.org/10.1007/978-3-642-40457-3_54-1
https://doi.org/10.1029/2000WR000207
https://doi.org/10.1016/j.jhydrol.2014.05.028
https://doi.org/10.1016/j.jhydrol.2004.03.042
https://doi.org/10.1016/j.advwatres.2013.06.010


Water Resources Research

Clark, M. P., Rupp, D. E., Woods, R. A., Zheng, X., Ibbitt, R. P., Slater, A. G., et al. (2008). Hydrological data assimilation with the ensemble 
Kalman filter: Use of streamflow observations to update states in a distributed hydrological model. Advances in Water Resources, 31(10), 
1309–1324. https://doi.org/10.1016/j.advwatres.2008.06.005

Cloke, H. L., & Pappenberger, F. (2009). Ensemble flood forecasting: A review. Journal of Hydrology, 375(3-4), 613–626. https://doi.
org/10.1016/j.jhydrol.2009.06.005

Coron, L., Delaigue, O., Thirel, G., Perrin, C., & Michel, C. (2020). airGR: Suite of GR hydrological models for precipitation-runoff modelling. 
R package version 1.4.3.65. https://doi.org/10.15454/EX11NA. Retrieved from https://CRAN.R-project.org/package=airGR

Coron, L., Thirel, G., Delaigue, O., Perrin, C., & Andréassian, V. (2017). The suite of lumped GR hydrological models in an R package. 
Environmental Modelling and Software, 94, 166–171. https://doi.org/10.1016/j.envsoft.2017.05.002

Cuo, L., Pagano, T. C., & Wang, Q. J. (2011). A review of quantitative precipitation forecasts and their use in short-to medium-range stream-
flow forecasting. Journal of Hydrometeorology, 12(5), 713–728. https://doi.org/10.1175/2011JHM1347.1

DeChant, C. M., & Moradkhani, H. (2011). Improving the characterization of initial condition for ensemble streamflow prediction using 
data assimilation. Hydrology and Earth System Sciences, 15, 3399–3410. https://doi.org/10.5194/hess-15-3399-2011

DeChant, C. M., & Moradkhani, H. (2014). Toward a reliable prediction of seasonal forecast uncertainty: Addressing model and initial 
condition uncertainty with ensemble data assimilation and sequential Bayesian combination. Journal of Hydrology, 519, 2967–2977. 
https://doi.org/10.1016/j.jhydrol.2014.05.045

Delaigue, O., Génot, B., Lebecherel, L., Brigode, P., & Bourgin, P. Y. (2020). Database of watershed-scale hydroclimatic observations in 
France. Université Paris-Saclay, INRAE, HYCAR Research Unit, Hydrology group, Antony. Retrieved from https://webgr.inrae.fr/
base-de-donnees

Douc, R., & Cappé, O. (2005). Comparison of resampling schemes for particle filtering. Proceedings of the 4th International Symposium on 
Image and Signal Processing and Analysis, 2005, 64–69.IEEE. https://doi.org/10.1109/ISPA.2005.195385

Doucet, A. (1998). Chapter 3 - On sequential simulation-based methods for Bayesian filtering. In A. Doucet, Monte Carlo methods for 
Bayesian estimation of hidden Markov models. Application to radiation signals, Ph.D. Thesis, Univ. Paris-Sud, Orsay, 1997. Retrieved 
from https://www.stats.ox.ac.uk/∼doucet/doucet_sequentialsimulationbasedfiltering1998.pdf

Dumedah, G., & Coulibaly, P. (2013). Evaluating forecasting performance for data assimilation methods: The ensemble Kalman fil-
ter, the particle filter, and the evolutionary-based assimilation. Advances in Water Resources, 60, 47–63. https://doi.org/10.1016/j.
advwatres.2013.07.007

Emerton, R. E., Stephens, E. M., Pappenberger, F., Pagano, T. C., Weerts, A. H., Wood, A. W., et al. (2016). Continental and global scale flood 
forecasting systems. Wiley Interdisciplinary Reviews: Water, 3(3), 391–418. https://doi.org/10.1002/wat2.1137

Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error 
statistics. Journal of Geophysical Research: Oceans, 99(C5), 10143–10162. https://doi.org/10.1029/94JC00572

Evensen, G. (2003). The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dynamics, 53, 343–367. 
https://doi.org/10.1007/s10236-003-0036-9

Ficchì, A., Perrin, C., & Andréassian, V. (2016). Impact of temporal resolution of inputs on hydrological model performance: An analysis 
based on 2400 flood events. Journal of Hydrology, 538, 454–470. https://doi.org/10.1016/j.jhydrol.2016.04.016

Franssen, H. J., & Kinzelbach, W. (2008). Real-time groundwater flow modeling with the ensemble Kalman filter: Joint estimation of states 
and parameters and the filter inbreeding problem. Water Resources Research, 44(9), W09408. https://doi.org/10.1029/2007WR006505

Gordon, N. J., Salmond, D. J., & Smith, A. F. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. In IEE Proceed-
ings F (Radar and Signal Processing). (Vol. 140, No. 2, pp. 107–113). IET Digital Library. https://doi.org/10.1049/ip-f-2.1993.0015

Guingla, P., Antonio, D., De Keyser, R., De Lannoy, G., Giustarini, L., Matgen, P., & Pauwels, V. (2012). The importance of parameter res-
ampling for soil moisture data assimilation into hydrologic models using the particle filter. Hydrology and Earth System Sciences, 16(2), 
375–390. https://doi.org/10.5194/hess-16-375-2012

Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: 
Implications for improving hydrological modelling. Journal of Hydrology, 377(1-2), 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003

Hao, Z., Singh, V. P., & Xia, Y. (2018). Seasonal drought prediction: advances, challenges, and future prospects. Reviews of Geophysics, 56(1), 
108–141. https://doi.org/10.1002/2016RG000549

Hapuarachchi, H. A. P., Wang, Q. J., & Pagano, T. C. (2011). A review of advances in flash flood forecasting. Hydrological Processes, 25(18), 
2771–2784. https://doi.org/10.1002/hyp.8040

Harrigan, S., Prudhomme, C., Parry, S., Smith, K., & Tanguy, M. (2018). Benchmarking ensemble streamflow prediction skill in the UK. 
Hydrology and Earth System Sciences, 22(3), 2023–2039. https://doi.org/10.5194/hess-22-2023-2018

Hersbach, H. (2000). Decomposition of the continuous ranked probability score for ensemble prediction systems. Weather and Forecasting, 
15(5), 559–570. https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2

Julier, S., Uhlmann, J., & Durrant-Whyte, H. (1995). A new approach for filtering nonlinear systems. In Proceedings of 1995 American 
Control Conference. (pp. 1628–1632). Seattle, WA: IEEE. https://ieeexplore.ieee.org/abstract/document/529783

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of basic Engineering, 82(1), 35–45. https://doi.
org/10.1115/1.3662552

Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and 
Graphical Statistics, 5(1), 1–25. https://doi.org/10.1080/10618600.1996.10474692

Leisenring, M., & Moradkhani, H. (2011). Snow water equivalent prediction using Bayesian data assimilation methods. Stochastic Environ-
mental Research and Risk Assessment, 25(2), 253–270. https://doi.org/10.1007/s00477-010-0445-5

Leleu, I., Tonnelier, I., Puechberty, R., Gouin, P., Viquendi, I., Cobos, L., et al. (2014). Re-founding the national information system de-
signed to manage and give access to hydrometric data. La Houille Blanche, 1, 25–32. https://doi.org/10.1051/lhb/2014004

Le Moine, N. (2008). The catchment seen from underground: A way to improve the performance and realism of rainfall-runoff models? 
(In French) (PhD thesis). Université Pierre et Marie Curie (Paris), Cemagref (Antony), p. 324. Retrieved from https://webgr.inrae.fr/
wp-content/uploads/2012/07/2008-LE_MOINE-THESE.pdf

Li, H., Luo, L., Wood, E. F., & Schaake, J. (2009). The role of initial conditions and forcing uncertainties in seasonal hydrologic forecasting. 
Journal of Geophysical Research: Atmosphere, 114, D04114. https://doi.org/10.1029/2008JD010969

Lindström, G., Johannson, B., Persson, M., Gardelin, M., & Bergström, S. (1997). Development and test of the distributed HBV-96 hydro-
logical model. Journal of Hydrology, 201, 272–288. https://doi.org/10.1016/S0022-1694(97)00041-3

Liu, Y., Weerts, A., Clark, M., Hendricks Franssen, H. J., Kumar, S., Moradkhani, H., et al. (2012). Advancing data assimilation in opera-
tional hydrologic forecasting: Progresses, challenges, and emerging opportunities. Hydrology and Earth System Sciences, 16, 3863–3887. 
https://doi.org/10.5194/hess-16-3863-2012

PIAZZI ET AL.

10.1029/2020WR028390

26 of 28

https://doi.org/10.1016/j.advwatres.2008.06.005
https://doi.org/10.1016/j.jhydrol.2009.06.005
https://doi.org/10.1016/j.jhydrol.2009.06.005
https://doi.org/10.15454/EX11NA
https://CRAN.R-project.org/package=airGR
https://doi.org/10.1016/j.envsoft.2017.05.002
https://doi.org/10.1175/2011JHM1347.1
https://doi.org/10.5194/hess-15-3399-2011
https://doi.org/10.1016/j.jhydrol.2014.05.045
https://webgr.inrae.fr/base-de-donnees
https://webgr.inrae.fr/base-de-donnees
https://doi.org/10.1109/ISPA.2005.195385
https://www.stats.ox.ac.uk/%7Edoucet/doucet_sequentialsimulationbasedfiltering1998.pdf
https://doi.org/10.1016/j.advwatres.2013.07.007
https://doi.org/10.1016/j.advwatres.2013.07.007
https://doi.org/10.1002/wat2.1137
https://doi.org/10.1029/94JC00572
https://doi.org/10.1007/s10236-003-0036-9
https://doi.org/10.1016/j.jhydrol.2016.04.016
https://doi.org/10.1029/2007WR006505
https://doi.org/10.1049/ip-f-2.1993.0015
https://doi.org/10.5194/hess-16-375-2012
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1002/2016RG000549
https://doi.org/10.1002/hyp.8040
https://doi.org/10.5194/hess-22-2023-2018
https://doi.org/10.1175/1520-0434(2000)015%3C0559:DOTCRP%3E2.0.CO;2
https://ieeexplore.ieee.org/abstract/document/529783
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1080/10618600.1996.10474692
https://doi.org/10.1007/s00477-010-0445-5
https://doi.org/10.1051/lhb/2014004
https://webgr.inrae.fr/wp-content/uploads/2012/07/2008-LE_MOINE-THESE.pdf
https://webgr.inrae.fr/wp-content/uploads/2012/07/2008-LE_MOINE-THESE.pdf
https://doi.org/10.1029/2008JD010969
https://doi.org/10.1016/S0022-1694(97)00041-3
https://doi.org/10.5194/hess-16-3863-2012


Water Resources Research

Maxwell, D. H., Jackson, B. M., & McGregor, J. (2018). Constraining the ensemble Kalman filter for improved streamflow forecasting. 
Journal of Hydrology, 560, 127–140. https://doi.org/10.1016/j.jhydrol.2018.03.015

McMillan, H. K., Hreinsson, E. Ö., Clark, M. P., Singh, S. K., Zammit, C., & Uddstrom, M. J. (2013). Operational hydrological data as-
similation with the recursive ensemble Kalman filter. Hydrology and Earth System Sciences, 17(1), 21–38. https://doi.org/10.5194/
hess-17-21-2013

Miller, R. N., Ghil, M., & Gauthiez, F. (1994). Advanced data assimilation in strongly nonlinear dynamical systems. Journal of the Atmos-
pheric Sciences, 51(8), 1037–1056. https://doi.org/10.1175/1520-0469(1994)051<1037:ADAISN>2.0.CO;2

Montzka, C., Moradkhani, H., Weihermüller, L., Franssen, H. J. H., Canty, M., & Vereecken, H. (2011). Hydraulic parameter estima-
tion by remotely-sensed top soil moisture observations with the particle filter. Journal of Hydrology, 399(3-4), 410–421. https://doi.
org/10.1016/j.jhydrol.2011.01.020

Moradkhani, H., Hsu, K. L., Gupta, H., & Sorooshian, S. (2005). Uncertainty assessment of hydrologic model states and parameters: Se-
quential data assimilation using the particle filter. Water Resources Research, 41(5), W05012. https://doi.org/10.1029/2004WR003604

Moradkhani, H., Sorooshian, S., Gupta, H. V., & Houser, P. R. (2005). Dual state–parameter estimation of hydrological models using en-
semble Kalman filter. Advances in Water Resources, 28(2), 135–147. https://doi.org/10.1016/j.advwatres.2004.09.002

NCAR - Research Applications Laboratory. (2015). Verification: Weather forecast verification utilities. R package version 1.42. https://
CRAN.R-project.org/package=verification

Noh, S. J., Rakovec, O., Weerts, A. H., & Tachikawa, Y. (2014). On noise specification in data assimilation schemes for improved flood 
forecasting using distributed hydrological models. Journal of Hydrology, 519, 2707–2721. https://doi.org/10.1016/j.jhydrol.2014.07.049

Noh, S. J., Tachikawa, Y., Shiiba, M., & Kim, S. (2011a). Applying sequential Monte Carlo methods into a distributed hydrologic model: 
lagged particle filtering approach with regularization. Hydrology and Earth System Sciences, 15, 3237–3251. https://doi.org/10.5194/
hess-15-3237-2011

Noh, S. J., Tachikawa, Y., Shiiba, M., & Kim, S. (2011b). Dual state-parameter updating scheme on a conceptual hydrologic model using 
sequential Monte Carlo filters. Annual Journal of Hydraulic Engineering, JSCE, 55, 1–6. https://doi.org/10.2208/jscejhe.67.I_1

Noh, S. J., Tachikawa, Y., Shiiba, M., & Kim, S. (2013). Sequential data assimilation for streamflow forecasting using a distributed hydrolog-
ic model: particle filtering and ensemble Kalman filtering. Floods: From Risk to Opportunity, 357, 341–349. Retrieved from https://iahs.
info/uploads/dms/15673.44-341-349-357-3-10_Noh.pdf

Noh, S. J., Weerts, A. H., Rakovec, O., Lee, H., & Seo, D. J. (2018). Assimilation of Streamflow Observations. In Q. Duan, F. Pappenberger, 
J. Thielen, A. Wood, H. Cloke, & J. Schaake (Eds.), Handbook of hydrometeorological ensemble forecasting. Berlin, Heidelberg: Springer. 
https://doi.org/10.1007/978-3-642-40457-3_33-2

Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil, F., & Loumagne, C. (2005). Which potential evapotranspiration input 
for a lumped rainfall–runoff model? Part 2—Towards a simple and efficient potential evapotranspiration model for rainfall–runoff 
modelling. Journal of Hydrology, 303(1-4), 290–306. https://doi.org/10.1016/j.jhydrol.2004.08.026

Pasetto, D., Camporese, M., & Putti, M. (2012). Ensemble Kalman filter versus particle filter for a physically-based coupled surface–subsur-
face model. Advances in Water Resources, 47, 1–13. https://doi.org/10.1016/j.advwatres.2012.06.009

Pfahl, S., O'Gorman, P. A., & Fischer, E. M. (2017). Understanding the regional pattern of projected future changes in extreme precipita-
tion. Nature Climate Change, 7(6), 423. https://doi.org/10.1038/nclimate3287

Piazzi, G., & Delaigue, O. (2020). airGRdatassim: Ensemble-Based Data Assimilation in GR Hydrological Models. R package version 0.1.3. 
https://doi.org/10.15454/WEYYVZ

Pushpalatha, R., Perrin, C., Le Moine, N., Mathevet, T., & Andréassian, V. (2011). A downward structural sensitivity analysis of hydrologi-
cal models to improve low-flow simulation. Journal of Hydrology, 411(1-2), 66–76. https://doi.org/10.1016/j.jhydrol.2011.09.034

Rakovec, O., Weerts, A. H., Hazenberg, P., Torfs, P. J. J. F., & Uijlenhoet, R. (2012). State updating of a distributed hydrological model with 
Ensemble Kalman Filtering: effects of updating frequency and observation network density on forecast accuracy. Hydrology and Earth 
System Sciences, 16(9), 3435–3449. https://doi.org/10.5194/hess-16-3435-2012

Rakovec, O., Weerts, A. H., Sumihar, J., & Uijlenhoet, R. (2015). Operational aspects of asynchronous filtering for flood forecasting. Hydrol-
ogy and Earth System Sciences, 19, 2911–2924. https://doi.org/10.5194/hess-19-2911-2015

Reed, S., Koren, V., Smith, M., Zhang, Z., Moreda, F., Seo, D. J., & DMIP Participants. (2004). Overall distributed model intercomparison 
project results. Journal of Hydrology, 298(1-4), 27–60. https://doi.org/10.1016/j.jhydrol.2004.03.031

Reichle, R. H., McLaughlin, D. B., & Entekhabi, D. (2002). Hydrologic data assimilation with the ensemble Kalman filter. Monthly Weather 
Review, 130(1), 103–114. https://doi.org/10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2

Ricci, S., Piacentini, A., Thual, O., Pape, E. L., & Jonville, G. (2011). Correction of upstream flow and hydraulic state with data assimilation 
in the context of flood forecasting. Hydrology and Earth System Sciences, 15(11), 3555–3575. https://doi.org/10.5194/hess-15-3555-2011

Salamon, P., & Feyen, L. (2009). Assessing parameter, precipitation, and predictive uncertainty in a distributed hydrological model using se-
quential data assimilation with the particle filter. Journal of Hydrology, 376(3-4), 428–442. https://doi.org/10.1016/j.jhydrol.2009.07.051

Samuel, J., Coulibaly, P., Dumedah, G., & Moradkhani, H. (2014). Assessing model state and forecasts variation in hydrologic data assimi-
lation. Journal of Hydrology, 513, 127–141. https://doi.org/10.1016/j.jhydrol.2014.03.048

Sauquet, E., Gottschalk, L., & Krasovskaia, I. (2008). Estimating mean monthly runoff at ungauged locations: An application to France. 
Hydrology Research, 39(5-6), 403–423. https://doi.org/10.2166/nh.2008.331

Schaake, J., Franz, K., Bradley, A., & Buizza, R. (2006). The hydrologic ensemble prediction experiment (HEPEX). Hydrology and Earth 
System Sciences Discussions, 3(5), 3321–3332. https://doi.org/10.5194/hessd-3-3321-2006

Schaake, J., Hamill, T. M., Buizza, R., & Clark, M. (2007). HEPEX: the hydrological ensemble prediction experiment. Bulletin of the Amer-
ican Meteorological Society, 88(10), 1541–1548. https://doi.org/10.1175/BAMS-88-10-1541

Shukla, S., & Lettenmaier, D. P. (2011). Seasonal hydrologic prediction in the United States: understanding the role of initial hydro-
logic conditions and seasonal climate forecast skill. Hydrology and Earth System Sciences, 15(11), 3529–3538. https://doi.org/10.5194/
hess-15-3529-2011

Sing, T., Sander, O., Beerenwinkel, N., & Lengauer, T. (2005). ROCR: visualizing classifier performance in R. Bioinformatics, 21(20), 3940–
3941. Retrieved from http://rocr.bioinf.mpi-sb.mpg.de

Sun, L., Nistor, I., & Seidou, O. (2015). Streamflow data assimilation in SWAT model using Extended Kalman Filter. Journal of Hydrology, 
531, 671–684. https://doi.org/10.1016/j.jhydrol.2015.10.060

Sun, Y., Bao, W., Valk, K., Brauer, C. C., Sumihar, J., & Weerts, A. H. (2020). Improving forecast skill of lowland hydrological mod-
els using ensemble Kalman filter and unscented Kalman filter. Water Resources Research, 56(8), e2020WR027468. https://doi.
org/10.1029/2020wr027468

PIAZZI ET AL.

10.1029/2020WR028390

27 of 28

https://doi.org/10.1016/j.jhydrol.2018.03.015
https://doi.org/10.5194/hess-17-21-2013
https://doi.org/10.5194/hess-17-21-2013
https://doi.org/10.1175/1520-0469(1994)051%3C1037:ADAISN%3E2.0.CO;2
https://doi.org/10.1016/j.jhydrol.2011.01.020
https://doi.org/10.1016/j.jhydrol.2011.01.020
https://doi.org/10.1029/2004WR003604
https://doi.org/10.1016/j.advwatres.2004.09.002
https://CRAN.R-project.org/package=verification
https://CRAN.R-project.org/package=verification
https://doi.org/10.1016/j.jhydrol.2014.07.049
https://doi.org/10.5194/hess-15-3237-2011
https://doi.org/10.5194/hess-15-3237-2011
https://doi.org/10.2208/jscejhe.67.I_1
https://iahs.info/uploads/dms/15673.44-341-349-357-3-10_Noh.pdf
https://iahs.info/uploads/dms/15673.44-341-349-357-3-10_Noh.pdf
https://doi.org/10.1007/978-3-642-40457-3_33-2
https://doi.org/10.1016/j.jhydrol.2004.08.026
https://doi.org/10.1016/j.advwatres.2012.06.009
https://doi.org/10.1038/nclimate3287
https://doi.org/10.15454/WEYYVZ
https://doi.org/10.1016/j.jhydrol.2011.09.034
https://doi.org/10.5194/hess-16-3435-2012
https://doi.org/10.5194/hess-19-2911-2015
https://doi.org/10.1016/j.jhydrol.2004.03.031
https://doi.org/10.1175/1520-0493(2002)130%3C0103:HDAWTE%3E2.0.CO;2
https://doi.org/10.5194/hess-15-3555-2011
https://doi.org/10.1016/j.jhydrol.2009.07.051
https://doi.org/10.1016/j.jhydrol.2014.03.048
https://doi.org/10.2166/nh.2008.331
https://doi.org/10.5194/hessd-3-3321-2006
https://doi.org/10.1175/BAMS-88-10-1541
https://doi.org/10.5194/hess-15-3529-2011
https://doi.org/10.5194/hess-15-3529-2011
http://rocr.bioinf.mpi-sb.mpg.de
https://doi.org/10.1016/j.jhydrol.2015.10.060
https://doi.org/10.1029/2020wr027468
https://doi.org/10.1029/2020wr027468


Water Resources Research

Szewrański, S., Chruściński, J., Kazak, J., Świąder, M., Tokarczyk-Dorociak, K., & Żmuda, R. (2018). Pluvial flood risk assessment 
tool (PFRA) for rainwater management and adaptation to climate change in newly urbanised areas. Water, 10(4), 386. https://doi.
org/10.3390/w10040386

Thiboult, A., Anctil, F., & Boucher, M. A. (2016). Accounting for three sources of uncertainty in ensemble hydrological forecasting. Hydrol-
ogy and Earth System Sciences, 20(5), 1809–1825. https://doi.org/10.5194/hess-20-1809-2016

Thielen, J., Bartholmes, J., Ramos, M. H., & Roo, A. D. (2009). The European flood alert system–part 1: concept and development. Hydrol-
ogy and Earth System Sciences, 13(2), 125–140. https://doi.org/10.5194/hess-13-125-2009

Thiemig, V., Bisselink, B., Pappenberger, F., & Thielen, J. (2015). A pan-African medium-range ensemble flood forecast system. Hydrology 
and Earth System Sciences, 19, 3365–3385. https://doi.org/10.5194/hess-19-3365-2015

Thirel, G., Martin, E., Mahfouf, J. F., Massart, S., Ricci, S., & Habets, F. (2010). A past discharges assimilation system for ensemble stream-
flow forecasts over France–Part 1: Description and validation of the assimilation system. Hydrology and Earth System Sciences, 14, 
1623–1637. https://doi.org/10.5194/hess-14-1623-2010

Thirel, G., Rousset-Regimbeau, F., Martin, E., & Habets, F. (2008). On the impact of short-range meteorological forecasts for ensemble 
streamflow predictions. Journal of Hydrometeorology, 9(6), 1301–1317. https://doi.org/10.1175/2008JHM959.1

Trambauer, P., Werner, M., Winsemius, H. C., Maskey, S., Dutra, E., & Uhlenbrook, S. (2015). Hydrological drought forecasting and skill as-
sessment for the Limpopo River basin, southern Africa. Hydrology and Earth System Sciences, 19(4), 1695–1711. https://doi.org/10.5194/
hess-19-1695-2015

Vidal, J. P., Martin, E., Franchistéguy, L., Baillon, M., & Soubeyroux, J. M. (2010). A 50-year high-resolution atmospheric reanalysis over 
France with the Safran system. International Journal of Climatology, 30(11), 1627–1644. https://doi.org/10.1002/joc.2003.10.1002/
joc.2003

Vrugt, J. A., Gupta, H. V., Nualláin, B., & Bouten, W. (2006). Real-time data assimilation for operational ensemble streamflow forecasting. 
Journal of Hydrometeorology, 7(3), 548–565. https://doi.org/10.1175/JHM504.1

Vrugt, J. A., & Robinson, B. A. (2007). Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and 
Bayesian model averaging. Water Resources Research, 43(1). W01411. https://doi.org/10.1029/2005WR004838

Wang, C. H., & Bai, Y. L. (2008). Algorithm for real time correction of stream flow concentration based on Kalman filter. Journal of Hydro-
logic Engineering, 13(5), 290–296. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:5(290)

Wang, D., Chen, Y., & Cai, X. (2009). State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter. 
Water Resources Research, 45(11), W11416. https://doi.org/10.1029/2008WR007401

Weerts, A. H., & El Serafy, G. Y. (2006). Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual 
rainfall-runoff models. Water Resources Research, 42(9), W09403. https://doi.org/10.1029/2005WR004093

Werner, M., Schellekens, J., Gijsbers, P., van Dijk, M., van den Akker, O., & Heynert, K. (2013). The Delft-FEWS flow forecasting system. 
Environmental Modelling and Software, 40, 65–77. https://doi.org/10.1016/j.envsoft.2012.07.010

Wood, A. W., Hopson, T., Newman, A., Brekke, L., Arnold, J., & Clark, M. (2016). Quantifying streamflow forecast skill elasticity to initial 
condition and climate prediction skill. Journal of Hydrometeorology, 17(2), 651–668. https://doi.org/10.1175/JHM-D-14-0213.1

Xie, X., & Zhang, D. (2010). Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter. Advances in 
Water Resources, 33(6), 678–690. https://doi.org/10.1016/j.advwatres.2010.03.012

Xie, X., & Zhang, D. (2013). A partitioned update scheme for state-parameter estimation of distributed hydrologic models based on the 
ensemble Kalman filter. Water Resources Research, 49(11), 7350–7365. https://doi.org/10.1002/2012WR012853

Yan, H., & Moradkhani, H. (2016). Combined assimilation of streamflow and satellite soil moisture with the particle filter and geostatisti-
cal modeling. Advances in Water Resources, 94, 364–378. https://doi.org/10.1016/j.advwatres.2016.06.002

Yan, H., Moradkhani, H., & Zarekarizi, M. (2017). A probabilistic drought forecasting framework: A combined dynamical and statistical 
approach. Journal of Hydrology, 548, 291–304. https://doi.org/10.1016/j.jhydrol.2017.03.004

Yesilnacar, E. K. (2005). The application of computational intelligence to landslide susceptibility mapping in Turkey. PhD Thesis, University 
of Melbourne, Department, p. 200. Retrieved from http://cat.lib.unimelb.edu.au/record=b2995654∼S6

Yossef, N. C., Winsemius, H., Weerts, A., van Beek, R., & Bierkens, M. F. (2013). Skill of a global seasonal streamflow forecasting system, 
relative roles of initial conditions and meteorological forcing. Water Resources Research, 49(8), 4687–4699. https://doi.org/10.1002/
wrcr.20350

Young, P. C. (2002). Advances in real-time flood forecasting. Philosophical Transactions of the Royal Society of London - A, 360(1796), 
1433–1450. https://doi.org/10.1098/rsta.2002.1008

Zappa, M., van Andel, S. J., & Cloke, H. L. (2018). Introduction to Ensemble Forecast Applications and Showcases. In Q. Duan, F. Pappen-
berger, J. Thielen, A. Wood, H. Cloke, & J. Schaake (Eds.), Handbook of hydrometeorological ensemble forecasting. Berlin, Heidelberg: 
Springer. https://doi.org/10.1007/978-3-642-40457-3_45-1

PIAZZI ET AL.

10.1029/2020WR028390

28 of 28

https://doi.org/10.3390/w10040386
https://doi.org/10.3390/w10040386
https://doi.org/10.5194/hess-20-1809-2016
https://doi.org/10.5194/hess-13-125-2009
https://doi.org/10.5194/hess-19-3365-2015
https://doi.org/10.5194/hess-14-1623-2010
https://doi.org/10.1175/2008JHM959.1
https://doi.org/10.5194/hess-19-1695-2015
https://doi.org/10.5194/hess-19-1695-2015
https://doi.org/10.1002/joc.2003.10.1002/joc.2003
https://doi.org/10.1002/joc.2003.10.1002/joc.2003
https://doi.org/10.1175/JHM504.1
https://doi.org/10.1029/2005WR004838
https://doi.org/10.1061/(ASCE)1084-0699(2008)13:5(290)
https://doi.org/10.1029/2008WR007401
https://doi.org/10.1029/2005WR004093
https://doi.org/10.1016/j.envsoft.2012.07.010
https://doi.org/10.1175/JHM-D-14-0213.1
https://doi.org/10.1016/j.advwatres.2010.03.012
https://doi.org/10.1002/2012WR012853
https://doi.org/10.1016/j.advwatres.2016.06.002
https://doi.org/10.1016/j.jhydrol.2017.03.004
http://cat.lib.unimelb.edu.au/record=b2995654%7ES6
https://doi.org/10.1002/wrcr.20350
https://doi.org/10.1002/wrcr.20350
https://doi.org/10.1098/rsta.2002.1008
https://doi.org/10.1007/978-3-642-40457-3_45-1

	Sequential Data Assimilation for Streamflow Forecasting: Assessing the Sensitivity to Uncertainties and Updated Variables of a Conceptual Hydrological Model at Basin Scale
	Abstract
	Plain Language Summary
	1. Introduction
	2. Sequential Ensemble-Based Data Assimilation
	2.1. Ensemble Kalman Filter
	2.2. Sequential Importance Resampling Particle Filter

	3. Material and Methods
	3.1. Watershed Set and Hydrometeorological Data
	3.2. Hydrological Model
	3.3. Probabilistic DA-Based Forecasts
	3.3.1. Implementation Details of DA Schemes
	3.3.2. Constrained EnKF Analysis
	3.3.3. Uncertainty in Meteorological Forcings
	3.3.4. Uncertainty in Model Parameters and State Variables
	3.3.5. Observational Uncertainty

	3.4. Experimental Setup
	3.5. Evaluation Metrics

	4. Results
	4.1. The Impact of Meteorological Uncertainty on DA-Based Forecasts
	4.2. The Usefulness of the Joint DA-Based Estimation of Forecast Initial States and Parameters
	4.3. The Impact of State Uncertainty on DA-Based Forecasts
	4.4. The Impact of DA-Based Updating Procedures on Model States

	5. Discussion
	6. Conclusions
	Appendix A
	Data Availability Statement
	References


